Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Decription of Biss-C Setup on PowerBrickLV
#1
Hi, I am operating a PowerBrickLV with 5/15A on channels 1-8.
We have the Biss-C serial encoder option and want to set up two Motors.

1. Direct Microstep with encoder feedback on Gate3[1].Chan[1]

2. VoiceCoil with Encoder feedback on Gate3[1].Chan[2]

To my surprise it Biss-C is the only Protocoll, which is not covered in the PowerBrickLV Manual.

Serial Encoder: Renishaw Resolute with 1nm resolution and 36Bit data. Linear Encoder.

I found a description on other Motors and Resolution of Biss-C serial encoders but I am not sure if I am able to translate that to my needs in short time because we need the encoders running as fast as possible. I am grateful for any help,
best reagards
Reply
#2
http://forums.deltatau.com/showthread.ph...-c#pid3169

Comment from 2012 regarding Biss-C I think is still relevant.
Not in Gate-3, but can be accessed in ACC-84E
Unless your Brick has the ACC-84 option, you may need a different feedback (???)

Acc-84E manual
Biss-C starts on page 125 (unfortunately for Turbo)
http://www.deltatau.com/manuals/pdfs/ACC...3277365390

Setup for the ACC-84E option on a P-Brick (with ACC-84E option) is covered in the Power PMAC Users Manual beginning page 128
Reply
#3
Hi, after accepting that this is not a quick issue and having read the section in the User's Manual I think I got the picture. So now I tried to set up my system with the help of an excel spreadsheet I found here. I get a position feedback, that is increasing wildly when I activate the motor. I'll just post my code and hope that someone sees the problem(s). If you could take a look at it that would great - don't take the comments in my code too serious, much of it is outdated and this is an experimental project file. And please excuse my messy formatting. I will keep on looking for solutions in other posts.

Motor[6] has serial feedback, Motor[8] is slaved to Motor[6] and produces quadrature signals.

startup file ------------------------------------------
Sys.WpKey = $AAAAAAAA
Sys.MaxCoords = 4
Sys.MaxMotors = 16

PowerBrick[1].PhaseFreq = 20000
PowerBrick[1].ServoClockDiv = 1
PowerBrick[0].PhaseFreq = 20000
PowerBrick[0].ServoClockDiv = 1
Sys.RtIntPeriod = 1
Sys.ServoPeriod = 1000 * (PowerBrick[0].ServoClockDiv + 1) / PowerBrick[0].PhaseFreq
Sys.PhaseOverServoPeriod = 1 / (PowerBrick[0].ServoClockDiv + 1)

PowerBrick[0].Chan[0].PwmFreqMult = 1
PowerBrick[0].Chan[1].PwmFreqMult = 1
PowerBrick[0].Chan[2].PwmFreqMult = 1
PowerBrick[0].Chan[3].PwmFreqMult = 1
PowerBrick[1].Chan[0].PwmFreqMult = 1
PowerBrick[1].Chan[1].PwmFreqMult = 1
PowerBrick[1].Chan[2].PwmFreqMult = 1
PowerBrick[1].Chan[3].PwmFreqMult = 1

Sys.WpKey = $AAAAAAAA // Disable Write-Protection
PowerBrick[0].Chan[0].PackOutData = 0 // Channel #1 Unpack Output Data
PowerBrick[0].Chan[1].PackOutData = 0 // Channel #2 Unpack Output Data
PowerBrick[0].Chan[2].PackOutData = 0 // Channel #3 Unpack Output Data
PowerBrick[0].Chan[3].PackOutData = 0 // Channel #4 Unpack Output Data
PowerBrick[1].Chan[0].PackOutData = 0 // Channel #5 Unpack Output Data
PowerBrick[1].Chan[1].PackOutData = 0 // Channel #6 Unpack Output Data
PowerBrick[1].Chan[2].PackOutData = 0 // Channel #7 Unpack Output Data
PowerBrick[1].Chan[3].PackOutData = 0 // Channel #8 Unpack Output Data
PowerBrick[0].Chan[0].PackInData = 0 // Channel #1 Unpack Input Data
PowerBrick[0].Chan[1].PackInData = 0 // Channel #2 Unpack Input Data
PowerBrick[0].Chan[2].PackInData = 0 // Channel #3 Unpack Input Data
PowerBrick[0].Chan[3].PackInData = 0 // Channel #4 Unpack Input Data
PowerBrick[1].Chan[0].PackInData = 0 // Channel #5 Unpack Input Data
PowerBrick[1].Chan[1].PackInData = 0 // Channel #6 Unpack Input Data
PowerBrick[1].Chan[2].PackInData = 0 // Channel #7 Unpack Input Data
PowerBrick[1].Chan[3].PackInData = 0 // Channel #8 Unpack Input Data

BrickLV.Chan[0].TwoPhaseMode = 1 //
BrickLV.Chan[1].TwoPhaseMode = 1 //
BrickLV.Chan[2].TwoPhaseMode = 1 //
BrickLV.Chan[3].TwoPhaseMode = 1 //
BrickLV.Chan[0].I2tWarnOnly = 0 // Motor #1 Amp I2T action, kill motor & display fault
BrickLV.Chan[1].I2tWarnOnly = 0 // Motor #2 Amp I2T action, kill motor & display fault
BrickLV.Chan[2].I2tWarnOnly = 0 // Motor #3 Amp I2T action, kill motor & display fault
BrickLV.Chan[3].I2tWarnOnly = 0 // Motor #4 Amp I2T action, kill motor & display fault
BrickLV.Chan[4].TwoPhaseMode = 1 //
BrickLV.Chan[5].TwoPhaseMode = 1 //
BrickLV.Chan[6].TwoPhaseMode = 1 //
BrickLV.Chan[7].TwoPhaseMode = 1 //
BrickLV.Chan[4].I2tWarnOnly = 0 // Motor #5 Amp I2T action, kill motor & display fault
BrickLV.Chan[5].I2tWarnOnly = 0 // Motor #6 Amp I2T action, kill motor & display fault
BrickLV.Chan[6].I2tWarnOnly = 0 // Motor #7 Amp I2T action, kill motor & display fault
BrickLV.Chan[7].I2tWarnOnly = 0 // Motor #8 Amp I2T action, kill motor & display fault

//Motor[8] - Quadrature signal output configuration
PowerBrick[1].Chan[3].PackOutData = 0 // Unpack Output Data
PowerBrick[1].Chan[3].OutputMode = PowerBrick[1].Chan[3].OutputMode | $8 // Force D PFM
PowerBrick[1].Chan[3].PfmFormat = 1 // =0 PFM, =1 Quadrature
PowerBrick[1].Chan[3].PfmDirPol = 0 // Non-Inverted
PowerBrick[1].Chan[3].OutFlagD = 1 // =0 for halls, =1 for PFM

EncTable[1].type = 11;
EncTable[1].pEnc = Motor[1].PhasePos.a;
EncTable[1].index1 = 5;
EncTable[1].index2 = 0;
EncTable[1].index3 = 0;
EncTable[1].index4 = 0;
EncTable[1].index5 = 255;
EncTable[1].index6 = 1;
EncTable[1].ScaleFactor = 1 / (256 * (EncTable[1].index5 + 1) * EXP2(EncTable[1].index1));


EncTable[2].type = 11;
EncTable[2].pEnc = Motor[2].PhasePos.a;
EncTable[2].index1 = 5;
EncTable[2].index2 = 0;
EncTable[2].index3 = 0;
EncTable[2].index4 = 0;
EncTable[2].index5 = 255;
EncTable[2].index6 = 1;
EncTable[2].ScaleFactor = 1 / (256 * (EncTable[2].index5 + 1) * EXP2(EncTable[2].index1));


EncTable[3].type = 11;
EncTable[3].pEnc = Motor[3].PhasePos.a;
EncTable[3].index1 = 5;
EncTable[3].index2 = 0;
EncTable[3].index3 = 0;
EncTable[3].index4 = 0;
EncTable[3].index5 = 255;
EncTable[3].index6 = 1;
EncTable[3].ScaleFactor = 1 / (256 * (EncTable[3].index5 + 1) * EXP2(EncTable[3].index1));


EncTable[4].type = 11;
EncTable[4].pEnc = Motor[4].PhasePos.a;
EncTable[4].index1 = 5;
EncTable[4].index2 = 0;
EncTable[4].index3 = 0;
EncTable[4].index4 = 0;
EncTable[4].index5 = 255;
EncTable[4].index6 = 1;
EncTable[4].ScaleFactor = 1 / (256 * (EncTable[4].index5 + 1) * EXP2(EncTable[4].index1));


EncTable[5].type = 11;
EncTable[5].pEnc = Motor[5].PhasePos.a;
EncTable[5].index1 = 5;
EncTable[5].index2 = 0;
EncTable[5].index3 = 0;
EncTable[5].index4 = 0;
EncTable[5].index5 = 255;
EncTable[5].index6 = 1;
EncTable[5].ScaleFactor = 1 / (256 * (EncTable[5].index5 + 1) * EXP2(EncTable[5].index1));


// Focusing Stepper, Master To Motor 8
// These Setup-Elements are not necessairy with encoder feedback
//EncTable[6].type = 11;
//EncTable[6].pEnc = Motor[6].PhasePos.a;
//EncTable[6].index1 = 5;
//EncTable[6].index2 = 0;
//EncTable[6].index3 = 0;
//EncTable[6].index4 = 0;
//EncTable[6].index5 = 255;
//EncTable[6].index6 = 1;
//EncTable[6].ScaleFactor = 1 / (256 * (EncTable[6].index5 + 1) * EXP2(EncTable[6].index1));

// Setup for use with encoder
// 400 Steps per Rotation gives 0.9°per Step.
// per PowerBrickLV manual that equates to 100 pole-pairs.
// This number is used for the setup of the ongoing phase-postion.

//Serial encoder setup elements
Acc84B[1].SerialEncCtrl = $B010B
Acc84B[1].Chan[1].SerialEncCmd = $1514A4
Gate3[1].Chan[1].SerialEncEna = 1

// --- Encoder Conversion Table for position/velocity feeback ----------
EncTable[6].Type = 1
EncTable[6].pEnc = Acc84B[1].Chan[1].SerialEncDataA.a
EncTable[6].index1 = 8
EncTable[6].index2 = 8
EncTable[6].ScaleFactor = 1/256


///////////////////////////////////////////////////////////////////////////////////

EncTable[7].type = 11;
EncTable[7].pEnc = Motor[7].PhasePos.a;
EncTable[7].index1 = 5;
EncTable[7].index2 = 0;
EncTable[7].index3 = 0;
EncTable[7].index4 = 0;
EncTable[7].index5 = 255;
EncTable[7].index6 = 1;
EncTable[7].ScaleFactor = 1 / (256 * (EncTable[7].index5 + 1) * EXP2(EncTable[7].index1));

//Virtual Motor, Quadrature adjustments
PowerBrick[1].Chan[3].EncCtrl = 8
PowerBrick[1].Chan[3].TimerMode = 3

// Virtual Motor, Slave to Motor 6
//EncTable[8].type=11
//EncTable[8].pEnc=Motor[8].IqCmd.a
//EncTable[8].pEnc1=Sys.pushm
//EncTable[8].index1=0
//EncTable[8].index2=0
//EncTable[8].index3=0
//EncTable[8].index4=1
//EncTable[8].index5=255
EncTable[8].ScaleFactor = 1/256
//EncTable[8].ScaleFactor = 1

enable plc 1 ; // initialising power-up-plc



global definitions file --------------------------
undefine all ; // Alle Koordinatensysteme deaktivieren (Vorsichtsma\ss{}nahme)



global DcBusInput = 48 ;



//=============================================================//
// Motor[1] - Stepper -----------------------------------------//
//=============================================================//
global Mtr1DcVoltage = 48 ;

// For phasing with stepper - method
global Mtr1PhasingTime = 1000 ; //msec

// Current settings
global Ch1MaxAdc = 33.85 ; // max adc-gain
global Ch1PeakCur = 1.5 ; // peak motor-current
global Ch1ContCur = 1.3 ; // continuous current
global Ch1HoldCur = 0.6 ; // hold current
global Ch1TimeAtPeak = 1 ; // time for peak current

//=============================================================//
// Motor[2] - Stepper -----------------------------------------//
//=============================================================//
global Mtr2DcVoltage = 48 ;

// For phasing with stepper - method
global Mtr2PhasingTime = 1000 ; //msec

// Current settings
global Ch2MaxAdc = 33.85 ; // max adc-gain
global Ch2PeakCur = 1.5 ; // peak motor-current
global Ch2ContCur = 1.3 ; // continuous current
global Ch2HoldCur = 0.6 ; // hold current
global Ch2TimeAtPeak = 1 ; // time for peak current

//=============================================================//
// Motor[3] - Stepper -----------------------------------------//
//=============================================================//
global Mtr3DcVoltage = 48 ;

// For phasing with stepper - method
global Mtr3PhasingTime = 1000 ; //msec

// Current settings
global Ch3MaxAdc = 33.85 ; // max adc-gain
global Ch3PeakCur = 1.8 ; // peak motor-current
global Ch3ContCur = 1.5 ; // continuous current
global Ch3HoldCur = 0.6 ; // hold current
global Ch3TimeAtPeak = 1 ; // time for peak current


//=============================================================//
// Motor[4] - Stepper -----------------------------------------//
//=============================================================//
global Mtr4DcVoltage = 48 ;

// For phasing with stepper - method
global Mtr4PhasingTime = 1000 ; //msec

// Current settings
global Ch4MaxAdc = 33.85 ; // max adc-gain
global Ch4PeakCur = 1.5 ; // peak motor-current
global Ch4ContCur = 1.3 ; // continuous current
global Ch4HoldCur = 0.6 ; // hold current
global Ch4TimeAtPeak = 1 ; // time for peak current


//=============================================================//
// Motor[5] - Stepper -----------------------------------------//
//=============================================================//
global Mtr5DcVoltage = 48 ;

// For phasing with stepper - method
global Mtr5PhasingTime = 1000 ; //msec

// Current settings
global Ch5MaxAdc = 33.85 ; // max adc-gain
global Ch5PeakCur = 1.5 ; // peak motor-current
global Ch5ContCur = 1.3 ; // continuous current
global Ch5HoldCur = 0.6 ; // hold current
global Ch5TimeAtPeak = 1 ; // time for peak current


//=============================================================//
// Motor[6] - Stepper -----------------------------------------//
//=============================================================//
global Mtr6DcVoltage = 48 ;

// For phasing with stepper - method
global Mtr6PhasingTime = 1000 ; //msec

// Current settings
global Ch6MaxAdc = 33.85 ; // max adc-gain
global Ch6PeakCur = 0.8 ; // peak motor-current
global Ch6ContCur = 0.6 ; // continuous current
global Ch6HoldCur = 0.2 ; // hold current
global Ch6TimeAtPeak = 1 ; // time for peak current


//=============================================================//
// Motor[7] - Stepper -----------------------------------------//
//=============================================================//
global Mtr7DcVoltage = 48 ;

// For phasing with stepper - method
global Mtr7PhasingTime = 1000 ; //msec

// Current settings
global Ch7MaxAdc = 33.85 ; // max adc-gain
global Ch7PeakCur = 1.5 ; // peak motor-current
global Ch7ContCur = 1.3 ; // continuous current
global Ch7HoldCur = 0.6 ; // hold current
global Ch7TimeAtPeak = 1 ; // time for peak current


//=============================================================//
// Motor[8] - Stepper -----------------------------------------//
//=============================================================//
global Mtr8DcVoltage = 48 ;

// For phasing with stepper - method
global Mtr8PhasingTime = 1000 ; //msec

// Current settings
global Ch8MaxAdc = 33.85 ; // max adc-gain
global Ch8PeakCur = 1.5 ; // peak motor-current
global Ch8ContCur = 1.3 ; // continuous current
global Ch8HoldCur = 0.6 ; // hold current
global Ch8TimeAtPeak = 1 ; // time for peak current


quadrature signal setup file --------------------------------
GLOBAL MaxPfmFreq = 6.25; // [MHz]
GLOBAL MinPulseWidth = 1000 / MaxPfmFreq; // 40 [nsec]
GLOBAL PulseWidth = 4*MinPulseWidth; // 600 [nsec]
PowerBrick[1].PfmClockDiv = LOG2(100 / (MaxPfmFreq)) // 2
PowerBrick[1].Chan[3].PfmWidth = PulseWidth * MaxPfmFreq / 1000 // $F (15)
GLOBAL PfmMaxSpeed = 1000000 / (PulseWidth + MinPulseWidth) // [kHz]

motor[6] setup file ----------------------------------
// Encoder-Feedback requires setup for ongoing phase-position
// motor-setup of brushless type.
// This has to be configured for biss-c serial communication
// protocoll encoders.

//--- Motor AbsPhase Setup ------------------------
Motor[6].AbsPhasePosFormat = $00042000 //??...
Motor[6].AbsPhasePosSf = 2048*1/1000
Motor[6].AbsPhasePosOffset = 0
Motor[6].pAbsPhasePos = Acc84B[1].Chan[1].SerialEncDataA.a
Motor[6].PhaseFindingTime = 4

//--- Motor Abs Position Setup ---------------------
Motor[6].AbsPosFormat = $00002400
Motor[6].AbsPosSf = 1
Motor[6].HomeOffset = 0
Motor[6].pAbsPos = Acc84B[1].Chan[1].SerialEncDataA.a

// --- Commutation ----------
Motor[6].PhaseCtrl = 1
Motor[6].pPhaseEnc = Acc84B[1].Chan[1].SerialEncDataA.a
Motor[6].PhaseEncRightshift = 8
Motor[6].PhaseEncLeftShift = 8
Motor[6].PhasePosSf = 2048*1/(256*1000) //because of 8-bits shift, result is 256x bigger.


// If motor does not move, reverse PhaseOffset and Pwsfm!!!

Motor[6].pEnc = EncTable[6].a
Motor[6].pEnc2 = EncTable[6].a

Motor[6].ServoCtrl = 0
Motor[6].AdcMask = $FFFC0000
Motor[6].AmpFaultLevel = 1
Motor[6].PhaseOffset = -512 //Remains for encoder-setup
Motor[6].PhaseCtrl = 4
Motor[6].Servo.MaxPosErr = 100000
Motor[6].Servo.Kp = 0.1
Motor[6].Servo.Kvff = 0
Motor[6].Servo.Kaff = 0
Motor[6].Servo.Kvfb = 0
Motor[6].Servo.Ki = 0
Motor[6].Servo.Kvifb = 0
Motor[6].Servo.Kviff = 0


Motor[6].IiGain = 2.0
Motor[6].IpfGain = 10.0
Motor[6].IpbGain = 2.0

Motor[6].MaxSpeed=500 //Max Speed = 5 steps/msec
Motor[6].InvAmax= 1 / (20 * Motor[6].MaxSpeed) //Max Acceleration = 1mu/msec^2
Motor[6].InvDmax=Motor[6].InvAmax //Max Deceleratiion = 1mu/msec^2
Motor[6].InvJmax=Motor[6].InvAmax //Max dA/dt

Motor[6].JogSpeed = 200
Motor[6].JogTa= -1 / (10 * Motor[6].MaxSpeed)
Motor[6].JogTs= Motor[6].JogTa

Motor[6].pLimits = PowerBrick[1].Chan[1].Status.a
Motor[6].LimitBits=9

Motor[6].PwmSf = -0.95 * 16384 //Remains for encoder-setup

Motor[6].MaxDac = Ch6PeakCur * 28378 / Ch6MaxAdc
Motor[6].I2tSet= Ch6ContCur * 28378 / Ch6MaxAdc
Motor[6].I2tTrip= ( pow(Motor[6].MaxDac,2) - pow(Motor[6].I2TSet,2) ) * Ch6TimeAtPeak

Motor[6].pDac=Gate3[1].Chan[1].Pwm[0].a
Motor[6].pAdc = Gate3[1].Chan[1].AdcAmp[0].a

// Stepper setup elements
//Motor[6].pEnc = EncTable[6].a
//Motor[6].pEnc2 = EncTable[6].a
//Motor[6].DtOverRotorTc = 0.0 ;
//Motor[6].IdCmd = Motor[6].I2TSet / 2 ;
//Motor[6].SlipGain = Sys.PhaseOverServoPeriod / (Motor[6].Stime + 1)
//Motor[6].AdvGain = 1/16*Sys.PhaseOverServoPeriod*(0.25/Sys.ServoPeriod/Sys.PhaseOverServoPeriod)
//Motor[6].PhaseMode = 1 //Is deleted for encoder-setup
//Motor[6].PhasePosSf = 0
//Motor[6].pAbsPhasePos = PowerBrick[1].Chan[1].PhaseCapt.a
//Motor[6].PowerOnMode = 2
//Motor[6].PhaseCtrl = 6 //turns to 4 for encoder-setup


motor[8] setup file -----------------------------------------------
// Virtual Motor following Master Motor

//Quadrature Signal configuration
Motor[8].pDac = PowerBrick[1].Chan[3].Pfm.a // Command output, point to PFM
Motor[8].MaxDac = 2 * 32768 / (MaxPfmFreq * 1000 / (1000000 / (PulseWidth + MinPulseWidth)))
Motor[8].InPosBand=10
Motor[8].Servo.BreakPosErr=2
Motor[8].Servo.Kbreak=0

// Slave-Configuration
Motor[8].pMasterEnc = EncTable[6].a // Master position source address
Motor[8].MasterPosSf = 1 // Electronic gear scale factor
Motor[8].MasterCtrl =1 //enabled (normal mode), =0 disabled, =3 offset mode
Motor[8].SlewMasterPosSf=0.0

Motor[8].Ctrl=Sys.PidCtrl // This can be set to Sys.ServoCtrl for using advanced filters. Sys.PidCtrl adds less CPU load in comparison.
Motor[8].pAmpEnable=0
Motor[8].pAmpFault=0
Motor[8].pLimits=0
//Motor[8].pEnc=EncTable[8].a
//Motor[8].pEnc2=EncTable[8].a
//Motor[8].pDac=Sys.Idata[8].a
//Motor[8].PosSf=360/(24*exp2(20))
//Motor[8].Pos2Sf=360/(24*exp2(20))
//Motor[8].Pos=0
Motor[8].HomePos=0
Motor[8].FatalFeLimit=0
Motor[8].WarnFeLimit=0



// Adjust the following values based upon the application

Motor[8].MotorTa=-1.5E-6
Motor[8].MotorTs=-1.5E-6
Motor[8].MaxSpeed=100
Motor[8].JogSpeed=10
Motor[8].InvAmax=1/5.471960662E-4
Motor[8].InvJmax=1/5.471960662E-4
Motor[8].InvDmax=1/5.471960662E-4
Motor[8].JogTa=0
Motor[8].JogTs=250
//Motor[8].InPosBand=0.0005
//Motor[8].InPosTime=9

Motor[8].Servo.Kp=50
Motor[8].Servo.Kvifb=0
Motor[8].Servo.Kviff=0
Motor[8].Servo.Kvfb=0
Motor[8].Servo.Kvff=50
Motor[8].Servo.Kafb=0
Motor[8].Servo.Kaff=0
Motor[8].Servo.Ki=0.001
Motor[8].Servo.Kfff=0
Motor[8].Servo.MaxPosErr=10000
Motor[8].Servo.MaxInt=28000

Motor[8].Servo.EstMinDac=0
Motor[8].Servo.NominalGain=0
Motor[8].Servo.MinGainFactor=1
Motor[8].Servo.MaxGainFactor=1

Motor[8].ServoCtrl = 1
Reply
#4
(12-01-2019, 03:00 PM)hannsx Wrote: Hi, after accepting that this is not a quick issue and having read the section in the User's Manual I think I got the picture. So now I tried to set up my system with the help of an excel spreadsheet I found here. I get a position feedback, that is increasing wildly when I activate the motor...

<snip>

(12-01-2019, 03:00 PM)hannsx Wrote: //Serial encoder setup elements
Acc84B[1].SerialEncCtrl = $B010B
Acc84B[1].Chan[1].SerialEncCmd = $1514A4
Gate3[1].Chan[1].SerialEncEna = 1

I've successfully set up a BISS-C encoder on an ACC-84E on Turbo hardware once, so take what I'm suggesting with a grain of salt.

I'll break out the SerialEncCtrl and SerialEncCmd setups from the above registers to confirm that they're as intended:

SerialEncCtrl:
- Serial Frequency: 8.333_ Mhz
- Trigger on Phase clock, falling edge
- no trigger output delay
- BiSS-C protocol

SerialEncCmd:
- CRC mask = $15
- BiSS-C protocol
- (support of MCD bit=0)?
- SerialEncTrigMode=0 - continuous sampling
- SerialEncTrigEna=1 - enable trigger on
- SerialEncStatusBits=2
- SerialEncNumBits=36

Two notes:

1. Renishaw documentation suggests a maximum trigger rate of 25kHz. The phase clock in your setup is 20kHz, so this should be within spec.

_However_, if you look inside the included Renishaw BiSS-C mode documentation (L-9709-9005-03-F, page 3) this rate is too high to operate without line delay compensation.

For prototyping could you slow the phase/servo clock and the serial encoder frequency and confirm the itntegrity of the serial communications ?

2. The CRC mask shown above doesn't appear to match the Renishaw/CRC standard. The documentation (again, L-9709-9005-03-F, page 2) shows the CRC calculation as x^6+x^1+x^0==$43, rather than $15?

(12-01-2019, 03:00 PM)hannsx Wrote: // --- Encoder Conversion Table for position/velocity feeback ----------
EncTable[6].Type = 1
EncTable[6].pEnc = Acc84B[1].Chan[1].SerialEncDataA.a
EncTable[6].index1 = 8
EncTable[6].index2 = 8
EncTable[6].ScaleFactor = 1/256

Here, could you check that EncTable[6].index3..6 are equal to zero?
In particular, I see that if index4 !=0 then the encoder value will be integrated, per the Power PMAC Users manual, page 198:

Delta Tau Power PMAC Users Manual Wrote:If EncTable[n].index2 is less than 32 (no tracking filter), then EncTable[n].index4 specifies the number of times the source data is integrated into the result data. At the default value of 0, no numerical integration is performed. A value of 1 specifies that a single integration is performed...

Finally, I've also attached the Excel spreadsheet that I found somewhere else on the forums, which I used to tease out the functions from the encoder control and command registers.

-Jeff Dickert
-Berkeley Center for Structural Biology
-ALS - Beamline Controls Group


Attached Files
.pdf   L-9709-9005-03-F.PDF (Size: 146.25 KB / Downloads: 0)
.pdf   Technical note 40_02_CRC Calculation.pdf (Size: 89.12 KB / Downloads: 0)
.xls   PPMAC_Acc84E-Biss_setup-1.xls (Size: 56.5 KB / Downloads: 0)
Reply
#5
Hi Jeff, thanks a lot for your response. I found my mistake.
I thought I needed to enable the serial encoder function on the PowerBrick. So I set
PowerBrick[1].Chan[1].SerialEncEna = 1
as was written in the PowerBrickLV Manual. I realized that the following commands
Acc84B[1].SerialEncCtrl=$B010B
Acc84B[1].Chan[1].SerialEncCmd =$2114A4
were available for the Accessorie 84B and substituted the name. After a long day trying to get to the core of the problem
together with my colleagues I thought that I may not need to enable that on the PowerBrick.
Though my colleagues and I thought that it was sensible to enable that function and did not uestioned it before. But that was it....
I can't say how happy I am to have found the problem.
It could have messed up the whole experiment scheduled for our scientist at the beamline. Having said that, it is always possible to run into trouble when you setup new systems. I'll post a description of my setup and my hardware when I am done with our Experiment.
Reply


Forum Jump:


Users browsing this thread: 1 Guest(s)